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Kinetic Plasma Physics
Need to model strongly kinetic phenomena

Vlasov equation for f(x,v,t) - cost is high (6+1)
Particle in Cell methods - solution by sampling

Typical applications
Microwave generators (magnetrons etc)
Particle accelerators/RF guns
Laser-matter interaction
Fusion applications
etc



Characteristics of the Problems

Full coupling between particles and fields
Electrically very large problems
Time-dependent and highly dynamic
Often complex interaction between particles, 
fields, and geometries
Particles can be highly relativistic, requiring 
full EM modeling



Particle-in-cell methods
PIC is a particle-mesh method that consists of four 
stages in a Lagrangian-Eulerian framework:

Solve continuum equations in Eulerian framework.
Track individual particles in Lagrangian framework.
Couple Eulerian->Lagrangian framework: interpolation.
Couple Lagrangian->Eulerian framework: deposition.

3. interpolation

4. deposition

1. Eulerian framework
2. Lagrangian framework



Governing equations in each stage

Maxwell’s equations:

Particle equations:

Lagrangian-> Eulerian:

Eulerian->Lagrangian:



Explicit Finite Difference
Central Yee-Mesh in space

Cloud-in-cell area weighing:
Charge conserving: [Villasenor, 
Buneman, CPC, ‘92]

Leap-frog in time

Interpolation 
Finite-difference Poisson solver 

if necessary for divergence 
cleaning

[Birdsall and Langdon, ’85]



Explicit Finite Difference Scheme:
Typical Properties

Established (30 years).
Second order accurate in space and time.
Energy conserving
Very noisy.
Structured grids.
Staircase boundary fitting: first order.
Stability criteria/issues.
Significant dispersion errors if CFL < 1.0.
Numerical Cherenkov radiation.



Limitations
This will translate into modeling inaccuracies and excessive 
computational expense when

Problems are large
Problems require long time integration
Problems contain significant geometric complexity
When high density problems are considered
Etc.

These are realistic regimes that need modeling
High-power microwave devices: Electro-magnetic pulse.
Fusion energy.
Accelerator modeling.

New PIC algorithms
PIC algorithms other than the finite difference method have not 
received significant attention.
For pure electromagnetic simulation in these regimes, it is no 
longer the preferred method
Higher-order methods are superior.



Project goals

Based on a DG-FEM EM solver, develop a new 
family of PIC codes.

High-order, general grids, 3D parallel etc
Identify and resolve key challenges

Divergence control, time-stepping, particle shapes, 
interaction with geometries, grid heating, Cherenkov 
radiation etc.

Test, Test, Test
Initial applications to the modeling of typical kinetic 
phenomena



Development of high-order DG-PIC

Solve Maxwell equations  
on variable order 
unstructured grid.

Use variable order 
interpolation to 
determine field at  
particle position.

Update the particle 
position and velocity with 
Newton’s law.

Variable order Runge-Kutta schemes for time integration.

Weigh particle to grid 
through a smooth
deposition function

[Jacobs and H., JCP, ’06]



DG-PIC: one Runge-Kutta stage

Update particles from time level k to k+1 

Determine charge and current density at stage k, ρk and Jk

Interpolate field, Ek and Bk to the particle position

Update field from stage k to k+1 

No splitting! High-order RK scheme gives high-order accuracy!

Explicit

Implicit or explicit.



DG-PIC: why?

Support for high-order accuracy: four to six points per 
smallest wavelength.
Flexible:

Order flexibility in space and time.
Geometric complexity through unstructured grids.
Decoupling of particle resolution and continuum Maxwell’s 
equation resolution.
Local character, ease of parallel implementation.
Build in dissipative mechanism for noise control.
Better characteristics to avoid numerical Cherenkov radiation

Very well validated for solving large scale Maxwell’s 
equations
Flexibility in particle shapes. 



DG method on triangles: interpolant

The domain is decomposed into K bodyconforming elements, 
each supporting a nodal basis of the form

Here:
Lj(x) is the multivariate Lagrange interpolating polynomial.
qj are nodal solutions at xi



DG method on triangles: nodes
Electrostatic nodes:

[Hesthaven, SIAM J. Num. Anal. ’98]



Nodal discontinuous Galerkin method
To recover the solution we require that qN satisfies Maxwell’s 
equations locally on D as,

This yields the local element based scheme

The scheme is local, nodal, h/p adaptive, explicit/implicit
depending on time scheme, parallel by construction. All 
operations are dense matrix-matrix multiplications.

[H. and Warburton, JCP ’02]



A Few EM results



EM Results



EM Results



EM Overview
DG-FEM schemes for EM have been developed both for 
time-domain and frequency domain.
Strong theoretical support
Extensive validation have been performed, confirming 
benefits of high-order, general/nonconforming grids 
Highly efficient on parallel computers
Other efforts include time-stepping, adaptivity/error 
control, reduced basis methods etc
DG-FEM now used by several groups worldwide for EM 
modeling, incl defense and commercial use.
USEMe and SLEDGE++ libraries available 



Back to the Plasma Problem…

This is a much harder problem … as you all know !

Divergence control/charge conservation
Particle movers
Particle/geometry interactions
Coupling between particles and grids
Numerical Cherenkov radiation
… and many other issues

We will discuss some of these issues in the following --
we have not reached ‘steady-state’ yet !



Divergence cleaning.
Divergence cleaning (satisfying Gauss laws).

Most methods: solve the Poisson equation for a correction 
potential φ that correct E to be divergence free.

Potential reduction of accuracy in DG
DG-PIC: Hyperbolic cleaning: solves modified Maxwell’s 
equations that sweep divergence errors out of the domain.
No reduced accuracy, but stiff!

[Jacobs and H., JCP, 06]



A Brief Comparison of the Two



Which one to choose ?
Hyperbolic cleaning

Speed and simplicity
.. Only approximate but controllable with parameter.
Large parameter induces stiffness
Parallel performance is direct

Projection
Exact charge conservation
Sole solver for low speed problems
Global solver - parallel efficiency still possible
Global exchange of information
Noise sensitive



Particle deposition: distribution function
The elements that are influenced by the particle cloud 
are determined through a look up table.
The particle influence area is constant

Ensures charge conservation
Makes # of elements within reach variable in space

The following function 

was found to be
flexible
computationally efficient

Still options to be explored here (local particle vs not)



Particle tracking: complex particle-wall 
interaction

For elastic collision, a levelset γ is pre-computed by solving the 
Hamilton-Jacobi equation

(γ,w) yields (distance, normal) to boundary
Pure reflection is now accomplished by a mirror principle
This works for any geometry!
Solve with explicit DG scheme in a pre-processing step.
This also provides information that may be useful for other things, e.g., 
particle emission models



Particle-Wall Interactions

QuickTime™ and a
BMP decompressor

are needed to see this picture.



Verification: Testing the Components of 
the Algorithm

Larmor particle track shows current Runge-Kutta 
tracking is slightly dissipative.
Release of a single particle shows neglible self-force.
Grid heating can be reduced with orders of magnitude by 
smoothening the particle shape.
Plasma wave computations shows hyperbolic cleaning 
requires χ>10 for accurate prediction of plasma 
frequency and energy conservation.
Plasma wave computations confirm fourth order 
accuracy of the Runge-Kutta scheme.
Classic plasma wave, two-stream instability, and Landau 
damping compare well to established methods.



A Few Single Particle Tests



Grid Heating

This is related to a requirement of resolving the Debye 
length and is a big problem in dense plasma modeling.

Typical solution -- increased resolution or some 
smoothing (implicit)

Further options in this formulation
Large particles
Smoother particles

… the problem is much better controlled, but it remains.



Numerical Cherenkov Radiation

This is directly associated with numerical properties of 
the field solver

High frequency waves propagate slower than speed-of-light
Fast particle are propagating faster than numerical speed-of-light
This creates numerical Cherenkov radiation -- which is a big 
problem in high-speed modeling.
Normal cure -- add dissipation to scheme.

The DG-FEM solver does not cure this -- but the build in 
very slight dissipation helps to control it very nicely and 
the inherent dispersion relations are better than FDTD.



Numerical Cherenkov II



Plasma Waves



Landau Damping



Weibel instability: computational model.
Initial conditions:

Homogeneous plasma with zero 
net charge. Constant 
background ionic charge density. 
Initial electron thermal velocities, 
u=0.25 and v=0.05.
Zero initial electric and magnetic 
field.

From these initial conditions the 
two velocities will evolve towards 
one thermal velocity in time
Weibel instability: unstable 
growth of transverse 
electromagnetic waves:

L=1

L=
1

[Jacobs et al., AIAA-2006-1171]



Weibel instability: EFDTD simulation

Convergence study establishes base result.
Simulation parameters:

NxN grid cells, with N=32, 64, 128, 256
Initialized with Np=36 particles per cell for all N.
At N=256 the smallest grid spacing is on the order 
of the Debye length, i.e. should be resolved.



EFDTD results: energies versus time.
Total energy 
increase indicative 
of finite grid 
instability.
At N=128 grid 
heating small 
enough to 
recognize trends.
Initial exponential 
growth in magnetic 
energy predicted by 
linear theory.
Electric energy 
mostly influenced 
by noise in the 
charge density 
through Gauss law.



EFDTD: energy spectra.

Highest resolved 
wave number k~ 
N/3. For larger k 
energy spectrum 
increases.
Central scheme 
doesn’t dissipate
energy at high k.
The electric field is 
dominated by noise, 
i.e. no drop in the 
energy spectrum at 
large k.



DG-PIC 2nd order: energies versus time.

The hyperbolic 
cleaning method is
second order.
At N=128, and χ=10, 
the energies are in 
good comparison. 
The peak magnetic 
energy is slightly less 
compared to IFDTD, 
perhaps a result from 
temporal damping in 
the DG-PIC method.



DG-PIC 2nd order: energy spectra.

Magnetic energy 
spectra compare 
well for hyperbolic 
cleaning.
Energy spectrum at
high k drops: the 
upwind nature of the 
interface matching 
results in  damping 
of waves with high 
frequencies.



Weibel instability: DG-PIC 5th order 
simulation
Investigate high-order DG-PIC 
discretization.
Used both Poisson and hyperbolic 
divergence cleaning.
Simulation parameters:

NxNx2 grid cells, with N=10.
Initialized with Np=(300)2, and (768)2 number of 
particles.
Approximation order 5.
Radius of particle R=0.075, and 0.038.
α=1 and 10. Power of distribution function:



DG-PIC 5th order: energies versus time.

Excellent 
stability 
properties, i.e. 
little grid 
heating.
Increasing the 
number of 
particles leads a 
significant 
improved 
comparison to 
FDTD.



Smooth bore magnetron: Brillouin flow.

cathode

anode

Hz=const

electron 
layer

Initial conditions:
Constant voltage.
Analytical solution of 
[Davidson et al., SPIE, ’89] 
for electric field and electron 
layer.

The constant electric field 
rotate the electrons, while 
the voltage keeps the layer 
from reaching the anode.
This flow is unstable, the 
mechanisms are unclear.



Smooth bore magnetron: results.
The computation confirms the instability in the Brillouin flow.
Low frequency particle spikes are also observed in finite 
difference simulations [Cartwright, private communication].
Average shows the presence of an electron layer. 

QuickTime™ and a
BMP decompressor

are needed to see this picture.



A6 Magnetron
Initial conditions:

Brillouin flow.
Background electric 
(constant voltage) and 
magnetic field.

Boundary condition: 
Conducting walls.
Emission model: if 
electron leaves domain 
inject new one at 
cathode at random 
position.

[Palevski and Bekefi, Phys. Fluids,, ‘79]

cathode

anode

Bz



A6 Magnetron: Prelimenary Results.
Particle show modes. Radial electric field.

QuickTime™ and a
BMP decompressor

are needed to see this picture.
QuickTime™ and a

BMP decompressor
are needed to see this picture.



Magnetic Reconnection

Magnetic field lines and Hx 
contours

Out-of-plane current 

[Jacobs et al., in preparation]

Initial conditions:
Harris current sheet.
Perturbed magnetic field.

The magnetic field topology 
changes in time: magnetic 
reconnection.
The reconnection is accompanied 
by a sharp drop in the magnetic 
potential energy and an increase 
in the kinetic energy. The flow 
exhibits dissipation without 
reconnection!



Magnetic reconnection:
(in collaboration with G. Lapenta, LANL)

IFDTD is reference simulation (ideally suited for 
magnetic reconnection simulation).
IFDTD:

NxN grid cells, with N=32.
Initialized with Np=25k particles.

DG-PIC
32x16x2 elements, fifth order.
Initialized with Np=100k number of particles.
Radius of particle R=0.375=Lx/32 (32 grid spacings in 
length of domain).
α=10, smooth distribution function.



Magnetic reconnection: shape function

A smoother particle function reduces grid heating effects.
A significant improvement of the results!



Current emphasis
Improved temporal discretizations

IMEX-RK Methods
Fully implicit time-stepping

Steps towards adaptive control of particle numbers
High-order local particle shapes.
Splitting/ coalesce strategies.
Kinetic error estimation.
Hybrid schemes.

Alternative field solver formulations
Validations



Temporal discretization.
Explicit stability criteria restrict the maximum 
allowable time step.

CFL Condition
Implications of grid heating
Electron cyclotron frequency

Often these criteria are more restrictive than they 
would need to be to get an accurate result.
Solution is implicit temporal discretization:

Fully implicit particle-in-cell.
Partially implicit particle-in-cell

Explicit particles
Implicit field solver



Fully implicit particle-in-cell
Simulating the whole system of particles and Maxwell’s equation 
is very expensive.
Update charge density and current density using the implicit 
moment method:

First/second order.

Combine with hyperbolic cleaning and DG-PIC discretization.

[Lapenta et al., Phys. Plasmas, 06]



Partially implicit time scheme:
IMEX Runge-Kutta.

IMEX Runge-Kutta schemes:
Couple variable order explicit Runge-Kutta and implicit 
Runge-Kutta.
Any part of a system of equations can be solved with 
explicit or implicit scheme.
Any part of spatial regime can be solved with explicit or 
implicit scheme.
Singly diagonal implicit scheme, the global inverse can be 
re-used. 
No low storage (yet). Fourth order ESDIRK scheme, 
requires 6N storage.

Hyperbolic cleaning stiffens field equations:
Solve implicitly.



Time schemes: Weibel instability result.

All temporal schemes 
can predict the Weibel 
instability.
IMEX scheme is 
accurate for time steps 
that are χ (>10) times 
larger than explicit.
The implicit moment 
scheme needs a time 
that is four times 
smaller than IMEX 
because of its lower 
order accuracy.



Adaptivity in Particle Numbers
Why adaptivity in particles?

Large geometrical changes requires spatial adjustments 
of the particle.
Large physical changes require adaptivity of the particle in 
velocity phase space, i.e. adaptivity of the number of 
particles.
Particle dynamics is most expensive part

How?
Variable radius of the deposition function.
Splitting and coalescence of particles
Error estimation for kinetic dynamics



Element based adaptivity: area weighing.

Use equidistant basis 
on the triangle, as 
opposed to 
electrostatic basis.
Do second order area 
weighing on the 
subtriangles.
Particle splits triangle 
into three subareas 
that determine the 
relative weight to 
opposing corners.



Element based adaptivity: area weighing.
It works, but…..many particles.

Plasma wave simulation.



Error estimation - A Starting Point
The development of a robust way to estimate the 
error in phase space is a significant challenge.
We are pursuing the following approach

Solve along with the PIC, a fluid or df model to obtain the 
first few moments - compared to the particles, the cost is 
minimal.
Compare the computed dynamics, using non-parametric 
estimation, to the fluid-like model.
Act accordingly !

DG-FEM is well suited for this approach as it solves 
the fluid equations without problems.
It opens for a very natural way of doing hybrid 
modeling of fluid/kinetic systems.



Concluding remarks
New PIC method based on a high-order DG-FEM

Decoupled particle resolution and field resolution.
High-order temporal schemes without splitting.
New divergence cleaning techniques.
2D extensively tested, 3D exists but still prelimenary.

Offers some advantages upon existing methods
Lower resolution requirements.
Complex geometry modeling.
Flexibility (order/locality/particle shapes etc)
Improved control of Cherenkov radiation and grid heating.

Future developments
Particle adaptivity in phase-space and alternative formulations
Concrete evidence of advantage of high-order for particles
Parareal time-stepping using fluid equations
Hybrid modeling
Extensive 3D development and validation effort.



… and a bit of promotion

SLEDG++ -- a DG discretization toolbox
Matlab style C++ operator building
General 2D/3D, high-order, unstructured grids etc
Support for refinement, coarsening, non-conforming etc
Integrated with solvers for parallel solution and matrix free form 
for time-advancement
A small but active user community

Interested ? -- Jan.Hesthaven@Brown.edu

Thank you for your attention !

mailto:Jan.Hesthaven@Brown.edu
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